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In this paper, we propose a no-reference (NR) quality assessment method for stereoscopic images by deep
convolutional neural network (DCNN). Inspired by the internal generative mechanism (IGM) in the
human brain, which shows that the brain first analyzes the perceptual information and then extract
effective visual information. Meanwhile, in order to simulate the inner interaction process in the human
visual system (HVS) when perceiving the visual quality of stereoscopic images, we construct a two-
channel DCNN to evaluate the visual quality of stereoscopic images. First, we design a Siamese
Network to extract high-level semantic features of left- and right-view images for simulating the process
of information extraction in the brain. Second, to imitate the information interaction process in the HVS,
we combine the high-level features of left- and right-view images by convolutional operations. Finally,
the information after interactive processing is used to estimate the visual quality of stereoscopic image.
Experimental results show that the proposed method can estimate the visual quality of stereoscopic
images accurately, which also demonstrate the effectiveness of the proposed two-channel convolutional
neural network in simulating the perception mechanism in the HVS.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Recently, with the development of 3D imaging technology and
multimedia applications, more and more stereoscopic images
appear in our daily life, including 3D movies, 3D games and so
on. The research on stereoscopic image processing has also
attracted the attention of both academia research and industry
applications. In the 3D image processing, transmission and recon-
struction, stereoscopic images are inevitably affected by noise
which may result in the loss of visual information, and image qual-
ity degradation. Image quality degradation not only affects the
users’ visual experiences but also its own value. Therefore, stereo-
scopic image quality assessment is crucial for various stereoscopic
image processing applications. Stereoscopic image quality assess-
ment includes subjective evaluation [1,2] and objective evaluation
[3,4]. It is well known that subjective evaluation is time-
consuming and power consumption, and subjective evaluation
results are influenced by environment and other factors. Mean-
while, subjective evaluation cannot be embedded in multimedia
applications. Thus, it is urgent to develop objective quality assess-
ment methods which can predict the visual quality of stereoscopic
images automatically.

Over the past few years, there have been many image quality
assessment (IQA) methods proposed including full-reference (FR),
reduced-reference (RR) and no-reference (NR) metrics. FR metrics
require the complete reference information to estimate visual
quality of images, such as peak signal-to-noise ratio (PSNR), Struc-
ture Similarity (SSIM) [5], SFUW [6]; RR metrics only need part of
reference information to evaluate the visual quality of images
[7,8]; NR metrics do not require any reference information for
visual quality estimation of images, such as blind image spatial
quality evaluator (BRISQUE) [9], Fang [10], NRLT [11], and Wu
[12–15]. All these aforementioned IQA methods are designed for
2D images. Compared with 2D image, there are one left- and one
right-view images in a stereopair. The difference between stereo-
scopic IQA and traditional IQA is that stereoscopic image has depth
information, and there are binocular vision characteristics in the
perception of stereoscopic image visual quality, including binocu-
lar integration and binocular rivalry. For stereoscopic image qual-
ity assessment, one straightforward solution is utilizing 2D-IQA
method to evaluate visual quality of left- and right-view images
respectively, and then calculate the final quality score of stereo-
scopic image by combining the estimated visual quality scores of
single-views based on a weighting strategy. As reported in
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[16,17], directly applying 2D-IQA method to estimate visual qual-
ity of stereoscopic images can obtain accurate evaluation results
in the case of symmetrical distortion, but it obtains poor perfor-
mance in the case of asymmetrical distortion, which cannot be
consistent with the subjective perception. Some visual examples
about symmetrical and asymmetrical distortions are illustrated
in Fig. 1. For the symmetrically distorted stereoscopic image, there
is the same amount of distortion in both left- and right-view
images. For asymmetrically distorted stereoscopic image, there
are different distortion levels or different kinds of distortions in
left- and right-view images [2]. Designing universal visual quality
assessment method for stereoscopic images is of great importance
and practical in real-world applications.
2. Related work

Compared with FR and RR methods, NR method is much desired
in multimedia applications since it does not require information
from reference images when evaluating image visual quality. The
main idea of NR methods is exploiting discriminant features for
image visual degradations, and the most successful IQA methods
are based on Natural Scene Statistics (NSS) [18]. In [10], Fang
et al. proposed a NR visual quality assessment method for
contrast-distorted images based on moment and entropy features,
in which the features’ histograms are fitted by Gaussian distribu-
tions and an extreme value probability distribution respectively,
and probability values are used as quality-aware features. Different
from the method in [10], Mittal et al. proposed to use the general-
ized Gaussian distribution (GGD) to fit luminance value distribu-
tion of images, and the parameters of GGD are employed to
perceive image distortion [9]. The common point of these two
methods [9,10] is that both of them require fitting process. Instead
of representing features by fitting function, Fang et al. adopted his-
togram to extract statistical luminance and texture features, and
built a NR visual quality estimation model for screen content
images. All of these three methods [9–11] follow two-step frame-
work including feature extraction and regression by machine
learning metric (support vector regression is widely adopted).
And the same framework have been also adopted in visual quality
assessment metrics for stereoscopic images. In [2], the authors
developed a NR binocular IQA model by incorporating NSS fea-
tures, where both 2D and 3D features are included. There have
been also some visual quality assessment approaches proposed
for stereoscopic images based on other machine learning metrics.
In [19], Zhou et al. first computed binocular rivalry response
(BRR) and binocular energy response (BER) of stereoscopic image,
Fig. 1. The visual examples of symmetric distortion and asymmetric distortion of stereos
is altered by additive GN for left view and GB for right view; (c) is altered by additiv
compression for left view and additive GB for right view.
where BRR is a perceptual effect that occurs when both eyes see
mismatched left- and right-view images at the same retinal loca-
tion, and BER is an important property of the HVS that can be rep-
resented as responses of a couple of monocular simple cells
perceived by both eyes. The authors utilized the generalized local
directional pattern and the local magnitude pattern to extract local
patterns of BRR and BER for stereoscopic image quality prediction
based on K-nearest neighbor method. In [20], the authors first con-
structed an over-complete dictionary matrix, by which they com-
puted the coefficient vector of stereoscopic images. Then, KNN
method is used to build stereoscopic quality assessment model
based on the assumption that stereoscopic images with similar
quality-aware features have similar visual quality.

Recently, convolutional neural network (CNN) has shown the
superiority in computer vision, such as image classification [21],
object detection [22,23] and action recognition [24]. CNN also
has been applied in image visual quality assessment. In [25], the
authors investigated the qualitative evaluation model for image
visual quality assessment, where the NSS features extracted from
wavelet domain are used to represent images and as the input of
deep belief net. In [26], Kang et al. introduced CNN to design image
visual quality estimation model, where the image patches in the
spatial domain are taken as input instead of hand-crafted features
[25] and the size of image patches are set to 32 � 32, while only
one convolutional layer and two fully connected layers (FCNs)
are included. Inspired by deep residual network [21], the authors
presented an end-to-end CNN model with two sum layers for
image visual quality estimation [27], 32 � 32 image pathes are
used as input and FSIM [28] values are employed as labels. Differ-
ent from these two methods [26,27], Kim et al. designed a two-step
CNN framework including local metric score regression and subjec-
tive score regression [29]. In the first step, the authors used four FR
metrics including SSIM [5], GMSD [30], FSIM [28], VSI [31] to pro-
duce labels of image patches, and trained a CNN mode to estimate
image local quality scores; in the second step, the patches of an
image are used as the input of CNN, and pooled to the subjective
quality score. The aforementioned three methods [26,27] contain
an obvious drawback, all of them used objective quality estimation
methods to produce labels as substitute of subjective scores which
makes the labels of image pathes contain much noise.

Owing to the fixed input of CNN, it greatly limits the application
scope of the CNN models designed for visual quality assessment of
2D images, they cannot be applied to evaluate the visual quality of
stereoscopic images directly. Thus, it is necessary to design CNN-
based model for visual quality assessment of stereoscopic images.
Recently, researchers have proposed using CNN to construct
stereoscopic image quality assessment methods. In [32], Zhang
copic images. (a) Altered additive Gaussian noise with different distortion levels; (b)
e GN with same distortion levels for both views; (d) is altered by additive JPEG
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et al. introduced 3-channel CNN for stereoscopic image quality
assessment, where the input of CNN include left image patch, right
image patch and difference image patch. In that model, the subjec-
tive quality score of the whole stereoscopic image is used as the
output of the deep network for training. In [33], the authors pro-
posed a NR IQA method for stereoscopic images based on binocular
integration (BI) index and binocular self-similarity (BS). In that
study, the BI index is used to evaluate monocular distortions and
it is obtained by the trained deep neural network, while the BS
index is computed by measuring the similarity of synthesized
and original left-view images. Similar with the metric proposed
in [29], Oh et al. proposed a no reference stereoscopic image qual-
ity assessment method based on CNN via local to global feature
aggregation [34], where the FR stereoscopic image quality assess-
ment method [16] is used to obtain local quality score and train
the CNN model, then the patches extracted from stereoscopic
image are used as the input to train the final stereoscopic image
visual quality estimation model by local feature aggregation. The
comparison of these three methods are summarized in Table 1.
Although there are many CNN-based stereoscopic image visual
quality estimation methods, it is still challenging to evaluate visual
quality of stereoscopic images accurately. It is meaningful to put
forward to an effective visual quality assessment model for stereo-
scopic images.

The contributions of this paper are summarized as follows: (1)
inspired by the inter generative mechanism in the brain, we pro-
pose to use deep convolutional neural network to extract the
high-level semantic information of stereoscopic images; (2) con-
sidering the binocular visual characteristics, we propose to mimic
the interaction process by fusing the high-level semantic features
of left and right views.

The remaining of this paper is organized as follows. Section 3
introduces the proposed method in detail. In Section 4, we provide
the experimental results from different aspects to demonstrate the
advantages of the proposed method. Section 5 summarizes the
paper.
3. Proposed method

The study of visual perception has found that there exists inter-
nal generative mechanism (IGM) [35] in the human brain when
perceiving and understanding visual information. Moreover, the
studies [36–39] on binocular perception revealed that there exists
complex internal interaction when perceiving the visual informa-
tion of stereoscopic images, binocular integration occurs in the
HVS when both left- and right-view images are perceived by the
HVS simultaneously, and binocular rivalry occurs in the HVS when
only left- or right-view image is perceived by the HVS. These pre-
vious findings motivate us to design two-channel DCNN based
model for visual quality assessment of stereoscopic images, which
incorporates visual information extraction and interaction as well
as visual quality regression.

The framework of the proposed method is shown in Fig. 2. We
feed the left- and right-view images into Siamese Network [40,41]
Table 1
Descriptions of relevant stereoscopic image quality assessment methods.

Databases Zhang [32] Lv [33] Oh [34]
Input Hand-crafted Patch Patch
Size of input 96 32 � 32 32 � 32
Number of CNN None 2 2
Number of FCN 5 3 3
Size of output 1 1 1
Activation function Relu Relu Relu
Loss function L2 Norm L2 Norm L2 Norm
containing four-group convolutional layers, and extract the high-
level semantic features of the left- and right-view images, where
the convolution kernel parameters of these two-channels in Sia-
mese Network are shared. After that, we concatenate the extracted
high-level feature maps of left- and right-view images and inte-
grate these feature maps by convolutional operations to simulate
the interactive process of the visual information in the HVS. Finally,
the integrated feature maps are transformed into feature vector by
using FCN, and the feature vector is presented in a non-linear way
by the multi FCNs, the visual quality score of stereoscopic image is
the output.
3.1. The detailed structure of the proposed framework

As shown in Fig. 2, the framework proposed in this paper
includes two parts. The first part is used for high-level semantic
information extraction of left- and right-view images, and the sec-
ond part is used for visual quality estimation of stereoscopic image.
In the first part, the input contain two image patches extracted
from left- and right-view images in the same spatial position,
and the size of image patch is set to 80 � 80. Previous work [42]
shows that the high-level semantic information of the images
can be effectively extracted by using 3 � 3 convolution kernel
and stacking the convolutional layer repeatedly. Thus following
this work, we design a four-group CNN framework to extract the
semantic information of left- and right-view images. The previous
three groups contain only two convolution layers and the last
group contains four convolution layers. There exists a pooling layer
between each two groups, and we do not use down-sample oper-
ation in the fourth group for retaining the receptive field of left-
and right-view images. Convolution operation is given as follows:

L kð Þ
n ¼ r xkLn�1 þ b kð Þ

� �
ð1Þ

where Lkn denotes the k-th feature map in n-th layer; xk and bk

denote convolution kernel and bias which assigned by end-to-end
learning; Ln�1 denotes feature maps in (n � 1)-th layer; r is rectified
linear unit (Relu) which can speed up the convergence of CNN and
reduce the computational complexity. Relu is calculated as below:

L kð Þ
n ¼ max 0; L kð Þ

n

� �
ð2Þ

In order to reduce the complexity of the proposed DCNN model,
each group convolution layer follows a pooling operation. The
maximum pooling is adopted and the window size is set to
2 � 2, which means that we use the largest value to represent
the receptive region.

The second part of the proposed DCNN framework is used for
feature transformation and visual quality estimation of stereo-
scopic image. First, we concatenate the high-level semantic feature
maps of left- and right-view images obtained by the proposed Sia-
mese Network, and we can obtain the overall feature maps of
stereoscopic image. The concatenation process is described as
follows:

FMo ¼ Concat FMl; FMrð Þ ð3Þ

where FMl and FMr denote the high-level feature maps of left- and
right-view images, respectively; and FMo represents the fused fea-
ture maps of stereoscopic image.

Motivated by IGM [35] and binocular perception [36–39] which
describe the mechanism of visual information extraction and inter-
active process of the visual information, we propose to fuse the
overall feature maps of stereoscopic image by convolution opera-
tion. Then, we transform the fused feature maps into feature vector
which is used to represent the visual quality of stereoscopic image
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by a non-linear way through the multi FCNs. The multi FCNs can be
formulated as below:

Q ¼ r x2 r x1 � f þ b1ð Þð Þ þ b2ð Þ ð4Þ

where Q represents the estimated visual quality score; f is feature
vector; x1 and x2 denote the weighting matrixes of the first and
the second FCN, respectively; b1 and b2 are two biases. These
parameters including x1;x2; b1 and b2 are obtained by end-to-
end learning. The detailed configurations of the proposed DCNN
are summarized in Table 2.

3.2. Training process

To train the proposed DCNN, the inputs are non-overlapping
image patches extracted from stereoscopic images. Considering
the balance between the size of image receptive field and the
requirement of large amount of samples when training the DCNN,
we set the size of image pathes to 80 � 80. We augment the train-
ing data by rotating 90, 180 and 270 degrees. We also employ the
subjective quality score of stereoscopic image to represent the
labels of image pathes since these stereoscopic images have homo-
geneous distortions [43]. We use L1 Norm as the loss function.

Loss ¼ 1
M

XM
m¼1

jjQm � Pmjj1 ð5Þ

where Qm and Pm denote the estimated visual quality score and the
subjective quality score, respectively;M represents bath-size, which
is set as 20 in our experiments. We adopt the Adam optimization
algorithm [44] for optimization. The learning rate a is set to 10�4

initially and subsequently descended by a factor of 10, we fixed a
to 10�6 when loss is leveled off.
Table 2
The configurations of the proposed DCNN.

Framework Feature map Parameters

Simese network Input 80 � 80 � 1 3 � 3 � 32
First group 80 � 80 � 32 3 � 3 � 64
Second group 40 � 40 � 64 3 � 3 � 128
Third group 20 � 20 � 128 3 � 3 � 256
Fourth group 10 � 10 � 256

Connected layer 10 � 10 � 512 3 � 3 � 512

Part 2 Fusion layer 1 5 � 5 � 512 3 � 3 � 512
Fusion layer 2 3 � 3 � 512
FCN 1 (3 � 3 � 512) (3 � 3 � 512) � 512
FCN 2 512 512 � 1
Output 1
4. Experimental results

4.1. Stereoscopic image databases

We use two 3D image quality databases to test the proposed NR
3D-IQA algorithm, which include LIVE 3D Image Quality Database
Phase I and Phase II [1,2,16]. These two databases are shown in the
following. It is worthy noting that LIVE Phase II contain symmetri-
cally and asymmetrically distorted images. In the experiment, we
use 80% images of each database to train the proposed DCNN
model, and the rest of the same database are used for testing. For
each database, we repeat this operation for 10 times and the med-
ian performance is reported.

LIVE 3D-IQA Database Phase I [1] This database is composed of
20 reference images and 365 symmetrically distorted ones by five
common distortion types, including JPEG2000 (JP2K), JPEG, white
noise (WN), Gaussian blur (GB) and Rayleigh fast-fading channel
simulations (FF). GB is used to generate 45 distorted images, and
other types of distortion are utilized to create 80 distorted images.
The corresponding human scores are also provided in the form of
DMOS. A lower DMOS denotes better visual quality of stereoscopic
images.

LIVE 3D-IQA Database Phase II [2,16] Different from LIVE 3D-
IQA Phase I database which only includes symmetrically distorted
stereoscopic images, both asymmetrically and symmetrically dis-
torted stereoscopic images are provided in LIVE 3D-IQA Phase II
database. Five distortion types including JP2K, JPEG, WN, GB and
FF are introduced to generate the distorted images. Each type of
distortion is used to create 72 distorted images. Totally, there are
240 asymmetrically distorted and 120 symmetrically distorted
stereoscopic images in this database.

The detailed descriptions of these databases are summarized in
Table 3. As shown in Table 3, the resolutions of images in each
database are the same.

4.2. Evaluation methodology

We used two evaluation metrics to compute the correlation
between the subjective and objective scores: Pearson Linear Corre-
Table 3
Descriptions of 3D image quality databases.

Databases LIVE Phase I LIVE Phase II

Number of subjects 32 32
Number of images 365 360

Image sizes 640 � 360 640 � 360
Distortions JP2K, WN, GB,

JPEG, FF
JP2K, WN, GB,

JPEG, FF
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lation Coefficient (PLCC) and Spearman Rank-order Correlation
Coefficient (SRCC) [45]. Higher SRCC and PLCC values indicate bet-
ter objective evaluation performance. Given the i-th image in the
database (with N images in total), its objective and subjective
scores are oi and si. PLCC can be estimated as follows.

PLCC ¼
PN

i¼1 oi � oð Þ si � sð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 oi � oð Þ �PN

i¼1 si � sð Þ
q ; ð6Þ

where o and s denote the mean values of oi and si, respectively.
SRCC can be computed as follows.

SRCC ¼ 1� 6
PN

i¼1e
2
i

N N2 � 1
� � ; ð7Þ

where ei is the difference between the ith image’s ranks in subjec-
tive and objective results.

Here, we use a five-parameter mapping function to nonlinearly
regress the quality scores into a common space as follows:

f xð Þ ¼ H1
1
2
� 1
1þ e H2 x�H3ð Þð Þ

� �
þH4xþH5 ð8Þ

where H1; . . . ;H5ð Þ are fitted by using subjective and objective qual-
ity scores, and they are determined in the testing stage.

4.3. Comparison experiments and discussions

The tested 2D-IQA or 3D-IQA models include FR methods PSNR,
SSIM [5], MS-SSIM [16], IDW-SSIM [17], and NR methods Chen [2],
Zhou [19], Shao [46], Lv [33], Zhang [32] and Oh [34]. Among the
compared FR methods, PSNR and SSIM [5] are designed for quality
assessment of 2D images, MS-SSIM [16] and IDW-SSIM [17] are
designed for quality assessment of stereoscopic images. All of the
compared NR methods are designed for quality assessment of
stereoscopic images. The performance of IQA methods is evaluated
by two criteria: PLCC and SRCC. It is worth noting that the results of
the compared 3D-IQA methods are taken from their corresponding
original papers.

The experimental results on LIVE 3D Image Quality Database
Phase I and Phase II are shown Table 4, where it can be seen that
on both Phase I and Phase II, the proposed method obtains the best
quality prediction performance in terms of PLCC and SRCC. The
consistent results from Phase I (symmetric distortion only) and
Phase II (both symmetric and asymmetric distortion) suggest that
the proposed method can automatically account for the relation-
ship between IGM and binocular perception by the proposed
two-channel DCNN.

As shown in Table 4, these 2D-IQA methods including PSNR and
SSIM cannot accurately predict the visual quality of stereoscopic
images, the main reason is that it does not consider the character-
Table 4
Experimental results on the LIVE 3D-IQA databases.

Databases LIVE Phase I LIVE Phase II

Methods PLCC SRCC PLCC SRCC

PSNR 0.834 0.834 0.665 0.665
SSIM 0.873 0.877 0.802 0.793

MS-SSIM [16] 0.917 0.916 0.900 0.889
IWD-SSIM [17] 0.873 0.874 0.916 0.919

Chen [2] 0.895 0.891 0.880 0.880
Zhou [19] 0.928 0.887 0.861 0.823
Shao [46] 0.907 0.896 0.848 0.824
Lv [33] 0.901 0.898 0.870 0.862

Zhang [32] 0.947 0.943 – –
Oh [34] 0.943 0.935 0.863 0.871
Proposed 0.957 0.946 0.946 0.934

The first two highest values are denoted as bold.
istics of stereoscopic images by averaging the estimated quality
scores of left- and right-view images directly. With the considera-
tion of binocular rivalry mechanism, IDW-SSIM can obtain accu-
rate stereoscopic image quality estimation results on
asymmetrical distortions, the weighting strategy in IDW-SSIM
works not very well when applied to symmetrical distorted stereo-
scopic images, the results indicate the difficulty in designing the
universal visual quality assessment method for stereoscopic
images. Here, the outperformance of the proposed method indi-
cates that the simple combination of the quality scores of left-
and right-view images cannot sufficiently represent complex and
non-intuitive interactions between multiple 3D visual cues includ-
ing image quality, depth quality and visual comfort interactions
during 3D visual perception. With the help of introduced IGM
and binocular perception inspired two-channel DCNN, the pro-
posed method can achieve higher accuracy in predicting the visual
quality of stereoscopic images.

Compared to the conventional approaches [2,19,46], these CNN
based stereoscopic image visual quality evaluation models includ-
ing Zhang [32], Oh [34] and the proposed method can obtain signif-
icant better performance in estimating visual quality of
stereoscopic images, the experimental results demonstrate the
validity of CNN when applied to stereoscopic image quality assess-
ment. Among these methods including Zhang [32], Oh [34] and the
proposed method, the proposed method obtains the best perfor-
mance, especially for asymmetrical distorted stereoscopic images.
The main reason is that we consider the internal generative mech-
anism and complex inner perception process in human brain when
perceiving the stereoscopic images. In Zhang [32], the authors used
subjective quality score of stereoscopic image to label the 32 � 32
image patch, which is too small to represent the whole stereo-
scopic image and it makes the labels of image patches contain
much noise. At the same time, the CNN model proposed in [32]
only include two convolution layers, it cannot extract the high-
level semantic features of the stereoscopic images effectively.
Meanwhile, it does not take into account the interaction process
in the brain when perceiving the stereoscopic images, just simply
combines the feature vectors of the left- and right-view images
and form the final feature representations of stereoscopic image.
In Lv [33], the author employed hand-crafted features as the input
of FCNs. Due to the limitation of the number of data, the fully con-
nected layer is easily overfitting which affects the generalization of
the network. At the same time, the author just used the trained
FCNs to calculate the visual quality the left- and right-view images
independently. In Oh [34], the author used FR stereoscopic image
visual quality evaluation model [2] to generate labels of the image
patches. The labels produced by this kind of data augmentation
method might introduce a lot of noise. The noise data generated
by this method is used to train this CNN model, its performance
will be subject to the performance of FR visual quality evaluation
metric.

Unlike these aforementioned methods, we take account of both
the number of training samples and the size of the receptive field
of the image patches, and set the size of the input image patches
to 80 � 80. And we extract the high-level semantic features of
the left and right views through the weight sharing network, which
accelerate the convergence rate of the network. The convolution
operation is used to fuse the high-level semantic features of the
left- and right-view images to simulate the inner interaction in
human brain. Experimental results show that the proposed stereo-
scopic image visual quality evaluation method in this paper can get
more consistent results with subjective perception that other rele-
vant methods.

Moreover, in Tables 5 and 6, we report PLCC scores on individ-
ual distortion types to validate the generalization ability of the pro-
posed method on LIVE 3D image quality databases. As shown in



Table 5
PLCC performance for individual distortion types on the LIVE 3D-IQA databases Phase
I.

Databases LIVE Phase I

Distortions JP2K JPEG WN GB FF

PSNR 0.785 0.219 0.935 0.916 0.703
SSIM 0.865 0.487 0.939 0.919 0.721

Chen [2] 0.907 0.695 0.917 0.917 0.735
Shao [46] 0.901 0.458 0.916 0.952 –
Zhang [32] 0.926 0.740 0.944 0.930 0.883
Proposed 0.975 0.753 0.973 0.953 0.868

The first two highest values are denoted as bold.

Table 6
PLCC performance for individual distortion types on the LIVE 3D-IQA databases Phase
II.

Databases LIVE Phase II

Distortions JP2K JPEG WN GB FF

PSNR 0.597 0.491 0.919 0.690 0.730
SSIM 0.704 0.678 0.922 0.838 0.834

Chen [2] 0.867 0.867 0.950 0.900 0.933
Shao [46] 0.826 0.828 0.928 0.984 –
Zhang [32] – – – – –
Proposed 0.975 0.952 0.972 0.983 0.929

The first two highest values are denoted as bold.

Table 7
Experimental results of cross-database validation. (1) Use Phase I as training set and
Phase II as testing set; (2) use Phase II as training set and then Phase I as testing set.

Training database

Performance LIVE Phase I LIVE Phase II

PLCC 0.811 0.899
SRCC 0.797 0.898
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Tables 5 and 6, directly applying 2D-IQA method to stereoscopic
image quality prediction works well in the case of white noise dis-
tortion. From Tables 5 and 6, it can be observed that the proposed
method, which does not attempt to recognize the distortion types
or give any specific treatment for any specific distortion type, pro-
nounces the best prediction performance for all distortion types.
4.4. Cross-database validation

We have conducted a cross-validation experiment to further
validate the proposed method. We use one of LIVE Phase I and II
databases as the training set and the other as the test set, the train-
ing strategies are same as those adopted in the proposed method.
The experimental results are shown in Table 7. From Table 7, we
can observe that the proposed method still can obtain accurate
estimation results, which demonstrates the robustness of the pro-
posed method. The performance of the proposed method when
training on LIVE Phase II is better than it when training on LIVE
Phase I, the main reason is that LIVE Phase II contains both sym-
metrical and asymmetrical distorted stereoscopic images, the pro-
posed DCNN framework trained on LIVE Phase II can capture both
symmetrical and asymmetrical distortions.
5. Conclusion and future work

Inspired by the IGM of the brain, in this paper, we propose a
novel NR 3D-IQA metric for stereoscopic images based on two-
channel DCNN. First, in order to simulate the visual information
process in the brain, we design a DCNN-based framework to
extract the high-level semantic information of the left- and right-
view images. Then, considering that binocular fusion and binocular
rivalry occur in the HVS when stereoscopic image is perceived by
the HVS, and there is a complex inner perception generative pro-
cess in the brain before making a decision about stereoscopic
image visual quality. Thus, we design a feature fusion network to
integrate the high-level semantic information of the left- and
right-view images, and simulate the inner inference mechanism
in the brain by the multi-layer convolution layer. Finally, the visual
characteristics of the stereoscopic image are presented in a non-
linear way through the multi-layer FCN, and the visual quality
score of the stereoscopic image is the output. Experimental results
show that the proposed method can obtain accurate evaluation
results when estimating the visual quality of stereoscopic images,
and the proposed model works well in asymmetrical distortions
and can obtain higher performance than other relevant methods,
which also prove the validity of the proposed visual feature extrac-
tion and fusion approach.
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